Review of 3D‐Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices

Review of 3D‐Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices

  记录组会将被提问题。

Figure 1 的具体实现步骤

  • 设计用的Adobe Illustrator,然后用Tanner L-Edit软件进行了进一步处理。
  • 做了一个双层图案化。首先是微通道,由于作者在Figure 6研究通道高度的影响,因此设计了2种高度的微通道:4.7 µm和3.2 µm。其中,4.7 µm是用的SU-8 2005光刻(5000 rpm/60 s),3.2 µm是反应离子刻蚀(负性胶nLOF 2020)。然后再图案化180 µm的分隔壁,用的SU-8 2075,软烘烤(50 °C/6 h),曝光后烘烤(50 °C/6 h),最后硬烘烤(90 °C/15 h)。
  • 直接3D打印PDMS。
  • 剥离PDMS,然后放在玻片上。播种细胞。
  • 健康的神经元在设备上生成,并通过微通道阵列相互连接。

Figure 6里对面的神经细胞是什么,为什么没产生轴突

  来自前脑的F‐hNSCs,大部分分化为星形胶质细胞;而来自于中脑腹侧的M‐hNSCs,大部分分化为多巴胺能神经元。

  黑质纹状体途径是一种多巴胺能途径,连接了中脑的黑质致密部(SNpc)与前脑中的背侧纹状体。这种多巴胺能连接是单向的,其中多巴胺能神经元从SNpc投射并将多巴胺传递到背侧纹状体。该装置是对黑质纹状体途径的原理验证。上方为F‐hNSCs分化而来的星形胶质细胞,下方为M‐hNSCs分化而来的多巴胺能神经元。

神经细胞染色方案和原理

免疫细胞化学

  是利用抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂 (荧光素、酶、金属离子、同位素) 显色来确定细胞内抗原的成分(主要是多肽和蛋白质),对其进行定位、定性及定量的研究。

  单克隆抗体:是一个B淋巴细胞克隆分泌的抗体,是应用细胞融合杂交瘤技术免疫动物制备的。特点是特异性强、抗体产量高。多克隆抗体:是将纯化后的抗原直接免疫动物后,从动物血中所获得的免疫血清,是多个B淋巴细胞克隆所产生的抗体混合物。特点是特异性低,会产生抗体的交叉反应。

DAPI/Hoechst染色

  DAPI 可以穿透细胞膜与细胞核中的双链DNA结合而发挥标记的作用,显微镜下可以看到显蓝色荧光的细胞,荧光显微镜观察细胞标记的效率高(几乎为100 %) ,常用于细胞凋亡检测,染色后用荧光显微镜观察或流式细胞仪检测。
  Hoechst 33342是一种可以穿透细胞膜的蓝色荧光染料,常用于细胞凋亡检测,染色后用荧光显微镜观察或流式细胞仪检测。也用于普通的细胞核染色,或常规的DNA染色。

死活细胞染色

  死活细胞染色原理是Calcein AM进入细胞,和活细胞中的酶反应形成Calcein荧光分子,并保留在细胞内部,所以通过Calcein荧光分子来检测活细胞;而EthD-1不能透过活细胞膜,只能进入死细胞和细胞内的基因片段结合后出现荧光,故此检测死细胞。Calcein AM和EthD-1没和细胞接触前不发荧光 。也有用PI染死细胞的。

尼氏染色

  神经元胞体里有大量嗜碱性的尼氏小体,可以与碱性染料(焦油紫、亚甲蓝、甲苯胺蓝和硫堇等)结合着色,可以清晰辨别尼氏体、核仁、树突、轴突等,但仅用于尼氏体较为丰富的组织染色。

3D打印的实现过程和原理

  这里用的是RegenHU的生物打印机。生物打印机大概分为以下几种原理。

  喷墨式:其基本原理是用加热或压电的方法以一定频率将“墨盒”中的“生物墨水”形成墨滴,通过针头喷洒在平台上,构成组织。喷墨式打印要求“墨水”具有较低的粘度,约 3.5 ~ 12 mPa s,即在“墨盒”中处于液态,滴到平台上后迅速固化(交联)。

  挤出式:是最常用的一类生物3D打印方式,可以打印粘度更高的生物材料,如水凝胶等。基本原理有两种,一是是采用加热模块将高分子材料熔融变软(200°左右),然后用机械结构将高分子材料拉丝挤出,高温的丝状材料遇到较冷的平台后凝固成型。由于此过程中材料会经历高温过程,因此不适用于含细胞的打印。二是用气压式、螺纹挤出式讲材料挤出打印。

  激光式:它可分为激光辅助式和光固化。激光辅助式打印采用激光代替喷墨打印中的加热或压电,聚焦在覆盖在含细胞的生物材料表面的“吸收层”上的一点,形成空泡,将该点的材料连同细胞一起挤出,滴在下面的平台上。光固化是采用激光作为固化的诱因,在激光聚焦的点诱使光致固化的材料固化,从而形成特定结构。

Sylgard 184的普通形式表现为牛顿流体,没有足够高的粘度,无法通过喷嘴可控地挤出并支撑印刷在其顶部的层的重量。

  将墨水在双旋转混合器中以2700 rpm的速度混合30 s,然后装入5 cc注射器筒中。为了除去气泡,将注射器在1700 G下离心3分钟。然后用塑料锥形针(内径200 µm)盖住注射器,然后将其装入3D生物打印机。使用真空抽吸将包含母模的硅晶片固定在打印阶段。在BioCad软件(regenHU)中定义了基于母版制造的设计的打印路径。室温下通过气动挤出直接在硅片上进行印刷,其中垫片墨水在550 Pa的压力下挤出,隔室墨水在275 Pa的空气压力下挤出。两种墨水的喷嘴速度均设置为10 mm s-1。垫片墨水以150 µm的层高打印,而隔室墨水以190 µm的层高打印。对于具有PMMA或PLA扩展的装置,只打印了三层隔室墨水,以便存在用于附着纤维的平坦表面。

  打印后,将包含打印装置的硅晶片放入60°C的烘箱中2天以完全固化硅弹性体。PLA扩展是使用透明的PLA丝在Felix Pro 3 3D打印机(Felix Robotics)上打印的。使用1.5毫米立铣刀在5 mm厚的PMMA薄板中微磨PMMA延伸部分。将延伸部分贴在一个薄层PDMS弹性体上并在60°C下将装置固化过夜。固化结束后,将单个器件从硅片上剥离下来,并在96%乙醇中灭菌。 通过暴露于空气等离子体将每个装置共价结合到玻璃盖玻片上。

评论

3D cell culture 3D cell culturing 3D cell microarrays 3D culture 3D culture model 3D printing 3D spheroid 3D tumor culture 3D tumors 3D vascular mapping ACT ADV AUTODESK Abdominal wall defects Acoustofluidics Adipocyte Adipogenesis Adoptive cell therapy AirPods Alginate Anticancer Anticancer agents Anticancer drugs Apple Apriori Association Analysis August AutoCAD Autodock Vina Bio-inspired systems Biochannels Bioengineering Bioinspired Biological physics Biomarkers Biomaterial Biomaterials Biomimetic materials Biomimetics Bioprinting Blood purification Blood-brain barrier Bone regeneration Breast cancer Breast cancer cells Breast neoplasms CM1860 CRISPR/Cas9 system CSS CTC isolation CTCs Cancer Cancer angiogenesis Cancer cell invasion Cancer immunity Cancer immunotherapy Cancer metabolism Cancer metastasis Cancer models Cancer screening Cancer stem cells Cell adhesion Cell arrays Cell assembly Cell clusters Cell culture Cell culture techniques Cell mechanical stimulation Cell morphology Cell trapping Cell-bead pairing Cell-cell interaction Cell-laden gelatin methacrylate Cellular uptake Cell−cell interaction Cervical cancer Cheminformatics Chemotherapy Chimeric antigen receptor-T cells Chip interface Circulating tumor cells Clinical diagnostics Cmder Co-culture Coculture Colon Colorectal cancer Combinatorial drug screening Combinatorial drug testing Compartmentalized devices Confined migration Continuous flow Convolutional neural network Cooking Crawler Cryostat Curved geometry Cytokine detection Cytometry Cytotoxicity Cytotoxicity assay DESeq DNA tensioners Data Mining Deep learning Deformability Delaunay triangulation Detective story Diabetic wound healing Diagnostics Dielectrophoresis Differentiation Digital microfluidics Direct reprogramming Discrimination of heterogenic CTCs Django Double emulsion microfluidics Droplet Droplet microfluidics Droplets generation Droplet‐based microfluidics Drug combination Drug efficacy evaluation Drug evaluation Drug metabolism Drug resistance Drug resistance screening Drug screening Drug testing Dual isolation and profiling Dynamic culture Earphone Efficiency Efficiency of encapsulation Elastomers Embedded 3D bioprinting Encapsulation Endothelial cell Endothelial cells English Environmental hazard assessment Epithelial–mesenchymal transition Euclidean distance Exosome biogenesis Exosomes Experiment Extracellular vesicles FC40 FP-growth Fabrication Fast prototyping Fibroblasts Fibrous strands Fiddler Flask Flow rates Fluorescence‐activated cell sorting Functional drug testing GEO Galgame Game Gene Expression Profiling Gene delivery Gene expression profiling Gene targetic Genetic association Gene‐editing Gigabyte Glypican-1 GoldenDict Google Translate Gradient generator Growth factor G‐CSF HBEXO-Chip HTML Hanging drop Head and neck cancer Hectorite nanoclay Hepatic models Hepatocytes Heterotypic tumor HiPSCs High throughput analyses High-throughput High-throughput drug screening High-throughput screening assays High‐throughput methods Histopathology Human neural stem cells Human skin equivalent Hydrogel Hydrogel hypoxia Hydrogels ImageJ Immune checkpoint blockade Immune-cell infiltration Immunoassay Immunological surveillance Immunotherapy In vitro tests In vivo mimicking Induced hepatocytes Innervation Insulin resistance Insulin signaling Interferon‐gamma Intestinal stem cells Intracellular delivery Intratumoral heterogeneity JRPG Jaccard coefficient JavaScript July June KNN Kidney-on-a-chip Lab-on-a-chip Laptop Large scale Lattice resoning Leica Leukapheresis Link Lipid metabolism Liquid biopsy Literature Liver Liver microenvironment Liver spheroid Luminal mechanics Lung cells MOE Machine Learning Machine learning Macro Macromolecule delivery Macroporous microgel scaffolds Magnetic field Magnetic sorting Malignant potential Mammary tumor organoids Manhattan distance Manual Materials science May Mechanical forces Melanoma Mesenchymal stem cells Mesoporous silica particles (MSNs) Metastasis Microassembly Microcapsule Microcontact printing Microdroplets Microenvironment Microfluidic array Microfluidic chips Microfluidic device Microfluidic droplet Microfluidic organ-on-a chip Microfluidic organ-on-a-chip Microfluidic patterning Microfluidic screening Microfluidic tumor models Microfluidic-blow-spinning Microfluidics Microneedles Micropatterning Microtexture Microvascular Microvascular networks Microvasculatures Microwells Mini-guts Mirco-droplets Molecular docking Molecular imprinting Monolith Monthly Multi-Size 3D tumors Multi-organoid-on-chip Multicellular spheroids Multicellular systems Multicellular tumor aggregates Multi‐step cascade reactions Myeloid-derived suppressor cells NK cell NanoZoomer Nanomaterials Nanoparticle delivery Nanoparticle drug delivery Nanoparticles Nanowell Natural killer cells Neural progenitor cell Neuroblastoma Neuronal cell Neurons Nintendo Nissl body Node.js On-Chip orthogonal Analysis OpenBabel Organ-on-a-chip Organ-on-a-chip devices Organically modified ceramics Organoids Organ‐on‐a‐chip Osteochondral interface Oxygen control Oxygen gradients Oxygen microenvironments PDA-modified lung scaffolds PDMS PTX‐loaded liposomes Pain relief Pancreatic cancer Pancreatic ductal adenocarcinoma Pancreatic islet Pathology Patient-derived organoid Patient-derived tumor model Patterning Pearl powder Pearson coefficient Penetralium Perfusable Personalized medicine Photocytotoxicity Photodynamic therapy (PDT) Physiological geometry Pluronic F127 Pneumatic valve Poetry Polymer giant unilamellar vesicles Polystyrene PowerShell Precision medicine Preclinical models Premetastatic niche Primary cell transfection Printing Protein patterning Protein secretion Pubmed PyMOL Pybel Pytesseract Python Quasi-static hydrodynamic capture R RDKit RNAi nanomedicine RPG Reactive oxygen species Reagents preparation Resistance Review Rod-shaped microgels STRING Selective isolation Self-assembly Self-healing hydrogel September Signal transduction Silk-collagen biomaterial composite Similarity Single cell Single cells Single molecule Single-cell Single-cell RNA sequencing Single‐cell analysis Single‐cell printing Size exclusion Skin regeneration Soft lithography Softstar Spheroids Spheroids-on-chips Staining StarBase Stem cells Sub-Poisson distribution Supramolecular chemistry Surface chemistry Surface modification Switch T cell function TCGA Tanimoto coefficient The Millennium Destiny The Wind Road Thin gel Tissue engineering Transcriptome Transfection Transient receptor potential channel modulators Tropism Tubulogenesis Tumor environmental Tumor exosomes Tumor growth and invasion Tumor immunotherapy Tumor metastasis Tumor microenvironment Tumor response Tumor sizes Tumor spheroid Tumor-on-a-chip Tumorsphere Tumors‐on‐a‐chip Type 2 diabetes mellitus Ultrasensitive detection Unboxing Underlying mechanism Vascularization Vascularized model Vasculature Visual novel Wettability Windows Terminal Word Writing Wuxia Xenoblade Chronicles Xin dynasty XuanYuan Sword Youdao cnpm fsevents miR-125b-5p miR-214-3p miRNA signature miRanda npm
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×