Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics

Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics

  一种基于气动的微流控平台,可以在设备中生产各种异型和同型3D肿瘤阵列。

Introduction

  过去数十年,悬滴、转瓶、表面修饰和细胞外支架法被用于3D培养。然而这些技术通常是复杂低效、耗时费力且耗费试剂。更重要的是,亟需人工组织(如3D肿瘤)的规模性控制以及操纵流体环境的方法。

  迄今为止,研究者已经开发了大量使用液滴微流控、纸微流控和集成微流控用来进行可控地3D细胞培养的技术平台,它们具有简单、精确和高效的优点。随着对装置功能性/效率和当前对环保的意识的需求增加,注重发展稳健的非一次性微流控系统以用于细胞操纵和分析是十分有必要的。

  先前的基于微流控装置的3D肿瘤培养主要聚焦于产生来源于单种类型肿瘤细胞的同型肿瘤(homogeneous tumors)。批量生产、动态操作以及时序分析形状均匀的,基于时空控制和组织模仿原理,将不同类型细胞(如肿瘤细胞和基质细胞)共培养的异型3D肿瘤的微流控装置尚有待发展。

  本研究中,作者提出了一种基于气动控制的微流控方法,在拥有平行的PμS阵列的整合装置中产生异型3D肿瘤。

Fig. 1 Schematic representation of a reusable 3D tumor platform using pneumatic microfluidics

  基于气动微结构(PμSs)的时空控制,装置中一次3D肿瘤培养循环的典型操作步骤包括细胞装载、细胞捕获、肿瘤培养和形成、芯片上分析(可选)、肿瘤回收和装置清洗以再利用。微流控装置包含3个流体单元,每个单元包括3个小室(C1、C2和C3)。 实际的装置(左上)和相应于小室的PμS(右上)展示在上图。使用食用染料以可视化装置上不同的微流控组件:绿色为流体层的小室,红色为PμS层的通道和PμSs。白色圆点是微流控室的支柱。

Fig. 2 Manipulative optimization of PμSs based on device fabrication and pneumatic control for a stable, repeated and long-term microfluidic manipulation in a single device

  • (A)使用不同气压(0到27 psi)驱动由四层(左上:F层即流体层;P层为PμSs层;S层为支持层;glass层为载玻片)组成的装置上的不同PDMS混合比(30:1、35:1、40:1和45:1)制造的PμSs。随着压力的增加(右),关闭PμSs(左下)的状态从静止状态(1)变为半动作状态(2)甚至全动作状态(3)。绿色标记的区域是被激活的PμS接触小室天花板的地方。
  • (B)一对装置之间PμSs的接触面积比。
  • (C)不同PDMS混合比的PμSs操纵潜能评估。作者执行了最大200次和150天的测试,分别验证PμS激活的重复性和持久性。
  • (D)不同PDMS混合比的PμSs在重复(左)和持久(右)激活的气动稳定性

Fig. 3 Microfluidic 3D tumor culture, analysis, and recovery

  • (A)PμS辅助细胞捕获。U251细胞和NIH 3T3细胞用DiI(红色)和DiO(绿色)用于特定细胞追踪。
  • (B)异型U251肿瘤在基于PμS的装置中培养。
  • (C)共培养肿瘤中的细胞活性。活/死(绿/红)细胞分别用FDA/PI染色可视化。荧光图像与(B)中光学图像相对应。
  • (D)装置中的3D肿瘤回收。
  • (E)共培养的U251肿瘤的细胞骨架展示。分别用红/蓝色表示肌动蛋白丝/核。表现出高度的细胞组织,细胞之间没有细胞间隙。

Fig. 4 Device reusability for 3D tumor culture

  • (A)单个装置中的异型U251肿瘤的重复性微流控培养。本研究中完成最大20次培养循环。
  • (B)不同装置和不同培养循环中的,基于尺寸比较的肿瘤培养稳定性评估。
  • (C)不同装置和不同培养循环中的,基于圆度比较的肿瘤培养稳定性评估。

Fig. 5 Heterotypic and homotypic 3D tumor cultures in high throughput in the PμS-based microfluidic device

  • (A)经过装置上5天的共培养/单独培养,产生的阵列样的HepG2/NIH 3T3、MKN-45/NIH 3T3、HepG2和MKN-45肿瘤。
  • (B)U251/NIH 3T3(顶部)和U251(底部)肿瘤的尺寸分布。
  • (C)HepG2/NIH 3T3(顶部)和HepG2(底部)肿瘤的尺寸分布。
  • (D)MKN-45/NIH 3T3(顶部)和MKN-45(底部)肿瘤的尺寸分布。以上,图(B-D)以10 μm的直径范围来确定。

Fig. 6 Spatial distribution of tumor cells and fibroblasts in different types of heterotypic 3D tumors

  • (A)荧光染色可视化不同肿瘤中U251、HepG2或MKN-45细胞(红色)与NIH 3T3细胞(绿色)共培养在水平和垂直部分的排列。荧光图像(左)中的蓝色虚线与定量读数(右)相对应。
  • (B)5天共培养中,肿瘤中U251和NIH 3T3细胞分布比例。
  • (C)5天共培养中,肿瘤中HepG2和NIH 3T3细胞分布比例。
  • (D)5天共培养中,肿瘤中MKN-45和NIH 3T3细胞分布比例。

Fig. 7 Dynamic monitoring and analysis of phenotypical variances of different heterotypic and homotypic tumors during PμS-based microfluidic 3D culture

  • (A)单独培养(左)和共培养(右)的HepG2肿瘤聚集的光学图像。
  • (B)定量比较共培养和单独培养的肿瘤的生长和形状动力学。U251、HepG2和MKN-45细胞来源的肿瘤被纳入评估。

Fig. 8 Real-time analysis of caspase-3 activation in different types of heterotypic and homotypic tumors treated with different drugs (VNR and GEM) at different concentrations (10 and 100 μg mL^−1^ )

  • (A)在不同的处理时间(0、6、12、24、36和48 h),用100 μg mL-1 VNR处理共培养的MKN-45肿瘤中的Caspase-3+细胞分布。Caspase-3+细胞用NucView 488 caspase-3底物荧光染色。伪彩色图像对应于图S13中的荧光图像。
  • (B)以10和100 μg mL-1 VNR或GEM处理的共培养和单独培养肿瘤(U251、HepG2或MKN-45)的Caspase-3+细胞比例。

Conclusion

  本文提出了一种基于PμS的、稳健的、高通量的异型3D肿瘤微流控培养平台。此外,还证实了成纤维细胞与肿瘤细胞的交流可以促进异型肿瘤在形成过程中出现非典型的外观。

Reference

Liu W, Tian C, Yan M, et al. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics[J]. Lab on a Chip, 2016, 16(21): 4106–4120.

评论

3D cell culture 3D cell culturing 3D cell microarrays 3D culture 3D culture model 3D printing 3D spheroid 3D tumor culture 3D tumors 3D vascular mapping ACT ADV AUTODESK Abdominal wall defects Acoustofluidics Adipocyte Adipogenesis Adoptive cell therapy AirPods Alginate Anticancer Anticancer agents Anticancer drugs Apple Apriori Association Analysis August AutoCAD Autodock Vina Bio-inspired systems Biochannels Bioengineering Bioinspired Biological physics Biomarkers Biomaterial Biomaterials Biomimetic materials Biomimetics Bioprinting Blood purification Blood-brain barrier Bone regeneration Breast cancer Breast cancer cells Breast neoplasms CM1860 CRISPR/Cas9 system CSS CTC isolation CTCs Cancer Cancer angiogenesis Cancer cell invasion Cancer immunity Cancer immunotherapy Cancer metabolism Cancer metastasis Cancer models Cancer screening Cancer stem cells Cell adhesion Cell arrays Cell assembly Cell clusters Cell culture Cell culture techniques Cell mechanical stimulation Cell morphology Cell trapping Cell-bead pairing Cell-cell interaction Cell-laden gelatin methacrylate Cellular uptake Cell−cell interaction Cervical cancer Cheminformatics Chemotherapy Chimeric antigen receptor-T cells Chip interface Circulating tumor cells Clinical diagnostics Cmder Co-culture Coculture Colon Colorectal cancer Combinatorial drug screening Combinatorial drug testing Compartmentalized devices Confined migration Continuous flow Convolutional neural network Cooking Crawler Cryostat Curved geometry Cytokine detection Cytometry Cytotoxicity Cytotoxicity assay DESeq DNA tensioners Data Mining Deep learning Deformability Delaunay triangulation Detective story Diabetic wound healing Diagnostics Dielectrophoresis Differentiation Digital microfluidics Direct reprogramming Discrimination of heterogenic CTCs Django Double emulsion microfluidics Droplet Droplet microfluidics Droplets generation Droplet‐based microfluidics Drug combination Drug efficacy evaluation Drug evaluation Drug metabolism Drug resistance Drug resistance screening Drug screening Drug testing Dual isolation and profiling Dynamic culture Earphone Efficiency Efficiency of encapsulation Elastomers Embedded 3D bioprinting Encapsulation Endothelial cell Endothelial cells English Environmental hazard assessment Epithelial–mesenchymal transition Euclidean distance Exosome biogenesis Exosomes Experiment Extracellular vesicles FC40 FP-growth Fabrication Fast prototyping Fibroblasts Fibrous strands Fiddler Flask Flow rates Fluorescence‐activated cell sorting Functional drug testing GEO Galgame Game Gene Expression Profiling Gene delivery Gene expression profiling Gene targetic Genetic association Gene‐editing Gigabyte Glypican-1 GoldenDict Google Translate Gradient generator Gromacs Growth factor G‐CSF HBEXO-Chip HTML Hanging drop Head and neck cancer Hectorite nanoclay Hepatic models Hepatocytes Heterotypic tumor HiPSCs High throughput analyses High-throughput High-throughput drug screening High-throughput screening assays High‐throughput methods Histopathology Human neural stem cells Human skin equivalent Hydrogel Hydrogel hypoxia Hydrogels ImageJ Immune checkpoint blockade Immune-cell infiltration Immunoassay Immunological surveillance Immunotherapy In vitro tests In vivo mimicking Induced hepatocytes Innervation Insulin resistance Insulin signaling Interferon‐gamma Intestinal stem cells Intracellular delivery Intratumoral heterogeneity JRPG Jaccard coefficient JavaScript July June KNN Kidney-on-a-chip Lab-on-a-chip Laptop Large scale Lattice resoning Leica Leukapheresis Link Lipid metabolism Liquid biopsy Literature Liver Liver microenvironment Liver spheroid Luminal mechanics Lung cells MOE Machine Learning Machine learning Macro Macromolecule delivery Macroporous microgel scaffolds Magnetic field Magnetic sorting Malignant potential Mammary tumor organoids Manhattan distance Manual Materials science May Mechanical forces Melanoma Mesenchymal stem cells Mesoporous silica particles (MSNs) Metastasis Microassembly Microcapsule Microcontact printing Microdroplets Microenvironment Microfluidic array Microfluidic chips Microfluidic device Microfluidic droplet Microfluidic organ-on-a chip Microfluidic organ-on-a-chip Microfluidic patterning Microfluidic screening Microfluidic tumor models Microfluidic-blow-spinning Microfluidics Microneedles Micropatterning Microtexture Microvascular Microvascular networks Microvasculatures Microwells Mini-guts Mirco-droplets Molecular docking Molecular dynamics Molecular imprinting Monolith Monthly Multi-Size 3D tumors Multi-organoid-on-chip Multicellular spheroids Multicellular systems Multicellular tumor aggregates Multi‐step cascade reactions Myeloid-derived suppressor cells NK cell NanoZoomer Nanomaterials Nanoparticle delivery Nanoparticle drug delivery Nanoparticles Nanowell Natural killer cells Neural progenitor cell Neuroblastoma Neuronal cell Neurons Nintendo Nissl body Node.js On-Chip orthogonal Analysis OpenBabel Organ-on-a-chip Organ-on-a-chip devices Organically modified ceramics Organoids Organ‐on‐a‐chip Osteochondral interface Oxygen control Oxygen gradients Oxygen microenvironments PDA-modified lung scaffolds PDMS PTX‐loaded liposomes Pain relief Pancreatic cancer Pancreatic ductal adenocarcinoma Pancreatic islet Pathology Patient-derived organoid Patient-derived tumor model Patterning Pearl powder Pearson coefficient Penetralium Perfusable Personalized medicine Photocytotoxicity Photodynamic therapy (PDT) Physiological geometry Pluronic F127 Pneumatic valve Poetry Polymer giant unilamellar vesicles Polystyrene PowerShell Precision medicine Preclinical models Premetastatic niche Primary cell transfection Printing Protein patterning Protein secretion Pubmed PyMOL Pybel Pytesseract Python Quasi-static hydrodynamic capture R RDKit RNAi nanomedicine RPG Reactive oxygen species Reagents preparation Resistance Review Rod-shaped microgels STRING Selective isolation Self-assembly Self-healing hydrogel September Signal transduction Silk-collagen biomaterial composite Similarity Single cell Single cells Single molecule Single-cell Single-cell RNA sequencing Single‐cell analysis Single‐cell printing Size exclusion Skin regeneration Soft lithography Softstar Spheroids Spheroids-on-chips Staining StarBase Stem cells Sub-Poisson distribution Supramolecular chemistry Surface chemistry Surface modification Switch T cell function TCGA Tanimoto coefficient The Millennium Destiny The Wind Road Thin gel Tissue engineering Transcriptome Transfection Transient receptor potential channel modulators Tropism Tubulogenesis Tumor environmental Tumor exosomes Tumor growth and invasion Tumor immunotherapy Tumor metastasis Tumor microenvironment Tumor response Tumor sizes Tumor spheroid Tumor-on-a-chip Tumorsphere Tumors‐on‐a‐chip Type 2 diabetes mellitus Ultrasensitive detection Unboxing Underlying mechanism Vascularization Vascularized model Vasculature Visual novel Wettability Windows Terminal Word Writing Wuxia Xenoblade Chronicles Xin dynasty XuanYuan Sword Youdao cnpm fsevents miR-125b-5p miR-214-3p miRNA signature miRanda npm
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×