Large-Scale Antitumor Screening Based on Heterotypic 3D Tumors Using an Integrated Microfluidic Platform

Large-Scale Antitumor Screening Based on Heterotypic 3D Tumors Using an Integrated Microfluidic Platform

  一种基于气动的微流控芯片,用于产生异型肿瘤以用于大规模化疗药物筛选。

Introduction

  基于二维(2D)细胞培养的化疗试验极大地加速了抗肿瘤药物的发现和开发的过程,以便快速识别先导候选药物和研究药物疗效机制。以2D单层培养的肿瘤细胞,不能确切地模拟肿瘤模型且缺乏一些体内三维(3D)微环境下的原始表型特征(如细胞通讯和细胞排列),因此在传统的2D培养下的抗肿瘤药物的细胞毒性不能在体内表现。

  目前,3D培养的用于药物检测的肿瘤大多不具有体内可见的组织异质性。因此,基于具有异型组织成分的仿生3D肿瘤,以大规模评估和筛选化合物及其化疗仍不在微流控设备的范围之内。同时,微流控浓度生成器被证明对化合物的浓度扩张和体内组织微环境的生化模拟极为有用。然而,通常存在于单个微腔内的基于扩散的梯度不适合对特定浓度药物治疗的肿瘤进行独立操作(如恢复)。与此同时,基于混合器的浓度梯度通常不超过3个数量级,如果使用设计复杂的生成器,可以扩大到6个数量级。并行多浓度操作用于基于3D肿瘤的联合化疗研究在微流控设备上进展较慢。

  因此,作者描述了一种易于使用的、具有多个微流控单元集即小室和气动微结构(PμSs)的3D肿瘤平台,用于体外评估使用化学化合物的肿瘤治疗。

Figure 1. Integrated microfluidic platform for heterotypic 3D-tumor-based screening

  • (A)拥有6组PμS阵列的微流控平台,每组有4个单元的PμS阵列,每个单元有28个PμSs。
  • (B)PμS辅助的微流控操作,包括精确细胞定位;高通量的3D肿瘤形成;基于3D肿瘤的药物处理、芯片上分析和回收的示意图。

Figure 2. Cell localization and 3D tumor production in microfluidic devices with pneumatic control

  • (A-B)PμS辅助细胞捕获。将A549细胞和NIH 3T3成纤维细胞分别用DiI(红色)和DiO(绿色)染色以进行特定的细胞追踪。
  • (C)共培养2天后异型A549与成纤维细胞的肿瘤阵列。
  • (D)共培养5天后用Ki67(红色)和核(蓝色)染色评价肿瘤细胞增殖。伪彩色图像显示与细胞增殖相关的Ki67蛋白的荧光强度分布。
  • (E)异型肿瘤的细胞活性。活/死(绿/红)细胞由FDA/PI染色确定。
  • (F)通过肌动蛋白丝(红色)染色以可视化细胞骨架。
  • (G)共培养5天后,芯片上的异型MCF-7、U251、HepG2、A549、HeLa和MKN-45肿瘤(A549培养3天)。

Figure 3. Initial antitumor sorting

  • (A)100 μM长春新碱(VCR)治疗2天后PI染色的A549肿瘤的荧光图像。肿瘤阵列允许对反应信号进行通量分析。
  • (B)不同药物(100 μM PTX、GEM、VNR、CPT、BLM和Ara-C)刺激前后异质性MCF-7、U251、HepG2、A549、HeLa和MKN-45肿瘤的大小分布。
  • (C)6种药物(100 μM)和6种异型3D肿瘤化疗的正交评价。

Figure 4. Response dynamics of heterotypic tumors to the selected drugs (i.e., MCF-7 and MKN-45 responses to VNR and U251 and HepG2 responses to CPT) at different concentrations (0.01–1000 μM)

  • (A)在不同浓度的药物处理4天后的尺寸动力学。可以看到MCF-7和U251为时间依赖,而MKN-45则在低浓度时尺寸增加,可能原因是化疗期间细胞聚集和去聚集的对抗作用。
  • (B)不同异型肿瘤使用VNR和CPT治疗4天后的治疗效果。异型肿瘤比同型有更高的细胞死亡,尽管促进肿瘤形成和生长,共培养3D肿瘤中的异型细胞交流似乎促进了药物反应,从而减少了药物抵抗。

Figure 5. Temporal analysis of caspase-3 activation in different types of heterotypic and homotypic tumors treated with VNR and CPT (10 μM)

  • (A)VNR诱导的共培养MKN-45肿瘤在不同时间(从左到右:0、6、12、24、36和48 h)caspase-3+细胞的荧光强度分布。
  • (B)用VNR或CPT处理的共培养和单独培养肿瘤(MCF-7、MKN-45或U251、HepG2)中caspase-3+细胞比例。

Figure 6. Flow cytometry analysis of apoptosis in the recovered heterotypic tumors after 4 days of drug treatments

  • (A)不同浓度(0.1到10 μM)VNR处理的异型MCF-7共培养(上)和10 μM CPT处理的3D U251共培养、单培养和2D培养(下)中不同状态的细胞定量。流式细胞术前用双膜联蛋白V/FITC和PI染色对细胞进行观察。细胞状态包括左上象限坏死细胞Q1,右上象限晚期凋亡细胞和坏死细胞Q2,右下象限早期凋亡细胞Q3,左下象限健康细胞Q4。
  • (B)不同浓度(0.1到100 μM)VNR和CPT处理的不同异型MCF-7(左)和U21肿瘤(右)不同阶段细胞比例。

Conclusion

  作者提出了一种使用便利的气动微操作的集成微流控平台以用于大规模基于异型3D肿瘤的抗癌研究。首次展示了集成的异型3D肿瘤系统在筛选化疗评估中的通用性。使用不同的化合物或浓度进行治疗性刺激肿瘤的多平行分割在单个装置中完成,对药物进行初步的抗肿瘤筛选,并对筛选的药物进行进一步的药效学评价。总之,在研究化疗和癌症病理时,异型培养和复杂肿瘤微环境构建的重要性是毋庸置疑的。

Reference

Liu W, Sun M, Han K, et al. Large-Scale Antitumor Screening Based on Heterotypic 3D Tumors Using an Integrated Microfluidic Platform[J]. Analytical Chemistry, 2019, 91(21): 13601–13610.

评论

3D cell culture 3D cell culturing 3D cell microarrays 3D culture 3D culture model 3D printing 3D spheroid 3D tumor culture 3D tumors 3D vascular mapping ACT ADV AUTODESK Abdominal wall defects Acoustofluidics Adipocyte Adipogenesis Adoptive cell therapy AirPods Alginate Anticancer Anticancer agents Anticancer drugs Apple Apriori Association Analysis August AutoCAD Autodock Vina Bio-inspired systems Biochannels Bioengineering Bioinspired Biological physics Biomarkers Biomaterial Biomaterials Biomimetic materials Biomimetics Bioprinting Blood purification Blood-brain barrier Bone regeneration Breast cancer Breast cancer cells Breast neoplasms CM1860 CRISPR/Cas9 system CSS CTC isolation CTCs Cancer Cancer angiogenesis Cancer cell invasion Cancer immunity Cancer immunotherapy Cancer metabolism Cancer metastasis Cancer models Cancer screening Cancer stem cells Cell adhesion Cell arrays Cell assembly Cell clusters Cell culture Cell culture techniques Cell mechanical stimulation Cell morphology Cell trapping Cell-bead pairing Cell-cell interaction Cell-laden gelatin methacrylate Cellular uptake Cell−cell interaction Cervical cancer Cheminformatics Chemotherapy Chimeric antigen receptor-T cells Chip interface Circulating tumor cells Clinical diagnostics Cmder Co-culture Coculture Colon Colorectal cancer Combinatorial drug screening Combinatorial drug testing Compartmentalized devices Confined migration Continuous flow Convolutional neural network Cooking Crawler Cryostat Curved geometry Cytokine detection Cytometry Cytotoxicity Cytotoxicity assay DESeq DNA tensioners Data Mining Deep learning Deformability Delaunay triangulation Detective story Diabetic wound healing Diagnostics Dielectrophoresis Differentiation Digital microfluidics Direct reprogramming Discrimination of heterogenic CTCs Django Double emulsion microfluidics Droplet Droplet microfluidics Droplets generation Droplet‐based microfluidics Drug combination Drug efficacy evaluation Drug evaluation Drug metabolism Drug resistance Drug resistance screening Drug screening Drug testing Dual isolation and profiling Dynamic culture Earphone Efficiency Efficiency of encapsulation Elastomers Embedded 3D bioprinting Encapsulation Endothelial cell Endothelial cells English Environmental hazard assessment Epithelial–mesenchymal transition Euclidean distance Exosome biogenesis Exosomes Experiment Extracellular vesicles FC40 FP-growth Fabrication Fast prototyping Fibroblasts Fibrous strands Fiddler Flask Flow rates Fluorescence‐activated cell sorting Functional drug testing GEO Galgame Game Gene Expression Profiling Gene delivery Gene expression profiling Gene targetic Genetic association Gene‐editing Gigabyte Glypican-1 GoldenDict Google Translate Gradient generator Gromacs Growth factor G‐CSF HBEXO-Chip HTML Hanging drop Head and neck cancer Hectorite nanoclay Hepatic models Hepatocytes Heterotypic tumor HiPSCs High throughput analyses High-throughput High-throughput drug screening High-throughput screening assays High‐throughput methods Histopathology Human neural stem cells Human skin equivalent Hydrogel Hydrogel hypoxia Hydrogels ImageJ Immune checkpoint blockade Immune-cell infiltration Immunoassay Immunological surveillance Immunotherapy In vitro tests In vivo mimicking Induced hepatocytes Innervation Insulin resistance Insulin signaling Interferon‐gamma Intestinal stem cells Intracellular delivery Intratumoral heterogeneity JRPG Jaccard coefficient JavaScript July June KNN Kidney-on-a-chip Lab-on-a-chip Laptop Large scale Lattice resoning Leica Leukapheresis Link Lipid metabolism Liquid biopsy Literature Liver Liver microenvironment Liver spheroid Luminal mechanics Lung cells MOE Machine Learning Machine learning Macro Macromolecule delivery Macroporous microgel scaffolds Magnetic field Magnetic sorting Malignant potential Mammary tumor organoids Manhattan distance Manual Materials science May Mechanical forces Melanoma Mesenchymal stem cells Mesoporous silica particles (MSNs) Metastasis Microassembly Microcapsule Microcontact printing Microdroplets Microenvironment Microfluidic array Microfluidic chips Microfluidic device Microfluidic droplet Microfluidic organ-on-a chip Microfluidic organ-on-a-chip Microfluidic patterning Microfluidic screening Microfluidic tumor models Microfluidic-blow-spinning Microfluidics Microneedles Micropatterning Microtexture Microvascular Microvascular networks Microvasculatures Microwells Mini-guts Mirco-droplets Molecular docking Molecular dynamics Molecular imprinting Monolith Monthly Multi-Size 3D tumors Multi-organoid-on-chip Multicellular spheroids Multicellular systems Multicellular tumor aggregates Multi‐step cascade reactions Myeloid-derived suppressor cells NK cell NanoZoomer Nanomaterials Nanoparticle delivery Nanoparticle drug delivery Nanoparticles Nanowell Natural killer cells Neural progenitor cell Neuroblastoma Neuronal cell Neurons Nintendo Nissl body Node.js On-Chip orthogonal Analysis OpenBabel Organ-on-a-chip Organ-on-a-chip devices Organically modified ceramics Organoids Organ‐on‐a‐chip Osteochondral interface Oxygen control Oxygen gradients Oxygen microenvironments PDA-modified lung scaffolds PDMS PTX‐loaded liposomes Pain relief Pancreatic cancer Pancreatic ductal adenocarcinoma Pancreatic islet Pathology Patient-derived organoid Patient-derived tumor model Patterning Pearl powder Pearson coefficient Penetralium Perfusable Personalized medicine Photocytotoxicity Photodynamic therapy (PDT) Physiological geometry Pluronic F127 Pneumatic valve Poetry Polymer giant unilamellar vesicles Polystyrene PowerShell Precision medicine Preclinical models Premetastatic niche Primary cell transfection Printing Protein patterning Protein secretion Pubmed PyMOL Pybel Pytesseract Python Quasi-static hydrodynamic capture R RDKit RNAi nanomedicine RPG Reactive oxygen species Reagents preparation Resistance Review Rod-shaped microgels STRING Selective isolation Self-assembly Self-healing hydrogel September Signal transduction Silk-collagen biomaterial composite Similarity Single cell Single cells Single molecule Single-cell Single-cell RNA sequencing Single‐cell analysis Single‐cell printing Size exclusion Skin regeneration Soft lithography Softstar Spheroids Spheroids-on-chips Staining StarBase Stem cells Sub-Poisson distribution Supramolecular chemistry Surface chemistry Surface modification Switch T cell function TCGA Tanimoto coefficient The Millennium Destiny The Wind Road Thin gel Tissue engineering Transcriptome Transfection Transient receptor potential channel modulators Tropism Tubulogenesis Tumor environmental Tumor exosomes Tumor growth and invasion Tumor immunotherapy Tumor metastasis Tumor microenvironment Tumor response Tumor sizes Tumor spheroid Tumor-on-a-chip Tumorsphere Tumors‐on‐a‐chip Type 2 diabetes mellitus Ultrasensitive detection Unboxing Underlying mechanism Vascularization Vascularized model Vasculature Visual novel Wettability Windows Terminal Word Writing Wuxia Xenoblade Chronicles Xin dynasty XuanYuan Sword Youdao cnpm fsevents miR-125b-5p miR-214-3p miRNA signature miRanda npm
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×