一种可用市售组件轻松组装的微流控液滴装置。
Introduction
思路:
- 微液滴被广泛应用于不同领域,包括食品加工和制造、化妆品、药品、细胞生物学、化学和生物化学。用于制造微液滴的方法包括机械混合、膜乳化和微流控技术。其中,微流控技术因其可精确控制微液滴的大小、形状、形态和组成而备受关注。目前基于聚二甲基硅氧烷(PDMS)的微流控装置因为构造复杂,需要使用昂贵的仪器等原因仍然主要局限于学术界应用。
- 为了扩大基于微液滴的微流控装置的应用范围,人们在设计和制造简单而廉价的装置方面付出了大量努力。近年来,各种简单和廉价的微流控装置如基于毛细管和聚甲基丙烯酸甲酯的同轴装置,基于咖啡搅拌器和PDMS的T型连接装置以及基于玻璃载玻片和盖玻片的T型连接和交叉连接装置已经被开发出来,用于可控的生成单滴和双滴。此外,可以通过这些装置的灵活组装来制造模块化的微流控装置。这种模块化的微流控装置为生产各种类型的微液滴提供了灵活多变的微平台,但它们的组装往往很费力,而且要依赖操作者。现已开发出更简单的方法,通过组装市售的HPLC组件如玻璃毛细管和转换头来构建微流控装置。不幸的是,由于其缺乏通用性,使用这些装置不能轻易制备多个微液滴。因此,需要开发一种简单、廉价、便携、可回收和多功能的成套微流控装置来生成微液滴。
- 装置提出了一种实用而简便的方法,由载玻片、毛细管、聚四氟微管、针头这四种部件来组装微流控装置,可以产生具有可控尺寸、形态和成分的多种模式的微米级尺寸液滴。这项工作的目的是证明所制造的设备的灵活性、通用性、可控性和实用性。这些廉价而可靠的微流控设备是一个强大的微平台,在组织工程化细胞装载与生物材料可控制备方面具有很好的可应用价值。
Generation of monodisperse single droplets
- (a)装置示意图。
- (b)共流部分的细节。
- (c)微流控产生ETPTA乳状液滴的照片。
- (d-e)六边形ETPTA液滴的白光(d)和荧光(e)图像。
Controlling droplet sizes
- (a1-d1)组装好的共流微流控芯片的照片(并非实验中使用装置)。
- (a2-d2)分别使用微流控设备a1-d1形成的高度单分散的ETPTA液滴。
- (a3-d3)所制备的a2-d2液滴的统计尺寸分布柱状图。针间距离被固定在500 μm(a2和b2),300 μm(c2)和60 μm(d2)。在所有的实验条件下,连续相(Qc)的流速被设定为120 μL min-1。分散相(Qd)的流速被设定为6.0 μL min-1(a2、b2和c2)和1.0 μL min-1(d2)。
Generation of monodisperse double droplets
- (a)装置示意图。
- (b)共流部分的细节。
- (c)组装好的34-23-19 G微流控装置的照片,用一枚硬币作比例。
- (d-f)分别由34-23-19 G、32-23-19 G和30-23-19 G同轴装置产生的具有控制核心尺寸的单分散双液滴的显微镜照片。
- (g)从测量50个液滴得到的其核心液滴直径和外壳液滴直径的统计尺寸分布(d、e和f)柱状图。流动速率为。Qinner = 1.0 μL min-1, Qmiddle = 6.0 μL min-1, and Qouter = 180 μL min-1。针间距离固定为500 μm。
具有单核、双核、三核、四核、五核和六核的单分散双液滴的显微镜照片。这些液滴是由34-24-20 G的同轴装置产生的。流动速率为Qinner = 1.0 μL min-1, Qmiddle = 10.0 μL min-1, and Qouter = 20-120 μL min-1。
Generation of multicomponent double droplets
- (a)组装好的微流控芯片的照片(并非实验中使用装置)。
- (b) 具有两个不同内部液滴的多成分双液滴的微流控乳化的典型图像。
- (c)具有红色和绿色内滴的单分散双液滴的显微镜照片。
- (d)多组分双液滴的显微镜照片,说明对内芯的数量、大小和比例的精确控制。
Conclusions
在本工作中,展示了一种新颖、便捷、灵活的方法,使用商业点胶针、迷你交叉连接和三通连接组装多功能微流体装置。
该系统的一个缺点是,由于钢针的不透明性,基于针头的微流控装置无法观察到乳化过程。尽管如此,这些装置很容易建造,并产生了高度单分散的液滴。这些装置的可控性通过灵活地组合三种类型的装置来证明,以便可控地生成单、双和多成分双液滴。无需特殊设备或复杂的操作,只需调整针头的尺寸、针头之间的间隔和流速,就能精确控制液滴的结构和大小。
因此,这些设备可以使工业数量级的各种单分散液滴、颗粒和胶囊的生产成为可能,而能用于科学和工业应用。
Reference
Li T, Zhao L, Liu W, et al. Simple and reusable off-the-shelf microfluidic devices for the versatile generation of droplets[J]. Lab on a Chip, 2016, 16(24): 4718–4724.