从零开始分子动力学模拟

从零开始分子动力学模拟

  记录一下学习分子动力学(Gromacs)的流程,希望给后人提供一点帮助。

工作环境

Gromacs

  需要在Linux下安装,再次不赘述如何安装ubuntu双系统/子系统的方法,可以自行搜索。

1
2
3
4
5
conda create --name gmx python=3.7.3 #不要高于3.9!
conda activate gmx

conda install gromacs
#如果报错请按下面操作换conda源
1
2
3
4
5
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
1
conda install networkx=2.3

avogadro

  用于给配体加氢操作,访问avogadro下载安装。

CHARMM36

  访问网站,下载CHARMM36力场,访问网站,下载对应cgenff_charmm2gmx脚本,解压至工作目录。

sort_mol2_bonds.pl

  处理分子的脚本文件,访问此处下载,本项目选择的是cgenff_charmm2gmx_py3_nx2.py,解压至工作目录。

Qtgrace

  适合快速预览可视化,点下载。

基本常识

  首先需要稍微了解一下各文件含义和表示方法,当然跳过直接做应该也行。

mol2

  以下为一个分子的mol2文件,显示如下,我将关键信息以注释形式标记:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@<TRIPOS>MOLECULE
UNL1 # 分子名
75 79 0 0 0 # 第一个代表有75个原子
SMALL
GASTEIGER # GASTEIGER电荷,代表一种电荷形式,由力场产生

# 第一列代表原子序号
# 第二列代表元素
# 中间三列代表XYZ,即坐标
# 第六列代表原子类型,如阿尔法碳原子
# 第七列代表分子序数
# 第八列为分子名称简写
# 最后一列原子电荷
@<TRIPOS>ATOM
1 N 12.7250 10.5600 -29.9030 N.3 1 UNL1 -0.2511
2 N 11.8620 9.5520 -29.5930 N.3 1 UNL1 -0.2289
3 N 18.2190 12.7890 -33.9180 N.3 1 UNL1 -0.2750
4 N 20.6040 13.9660 -34.9820 N.3 1 UNL1 -0.2751
5 C 18.2320 11.3310 -31.1210 C.3 1 UNL1 0.1074
6 C 18.0730 11.2020 -29.7430 C.3 1 UNL1 -0.0211

pdb

  以下为一个分子的mol2文件,显示如下,我将关键信息以注释形式标记:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 第一列代表原子
# 第二列代表原子序号
# 第三列代表原子类型,比如CA是阿尔法碳原子
# 第四列代表氨基酸缩写
# 第五列代表蛋白质的链
# 第六列代表氨基酸残基编号,如3就是3号残基
# 第七到九列代表代表XYZ
# 第十列代表占位比,1.00即代表该原子在该位置出现概率为100%
# 第十一列代表温度因子,原子热振动程度
# 最后一列为元素
# 如果计算电荷,还能多一列电荷信息

ATOM 34 N ASP A 3 27.619 20.810 -7.568 1.00 0.49 N
ATOM 35 CA ASP A 3 28.326 21.638 -8.592 1.00 0.49 C
ATOM 36 C ASP A 3 29.110 20.808 -9.598 1.00 0.49 C
ATOM 37 O ASP A 3 29.501 19.679 -9.308 1.00 0.49 O
ATOM 38 CB ASP A 3 29.198 22.696 -7.862 1.00 0.49 C
ATOM 39 CG ASP A 3 28.341 23.607 -6.998 1.00 0.49 C
ATOM 40 OD1 ASP A 3 27.122 23.300 -6.909 1.00 0.49 O
ATOM 41 OD2 ASP A 3 28.899 24.541 -6.394 1.00 0.49 O1-
ATOM 42 N VAL A 4 29.299 21.335 -10.822 1.00 0.74 N

操作步骤

生成拓扑

  • 将对接复合物的pdb文件以文本格式打开,复合物前面为小分子,剪切出来新建为mol.pdb文件,剩下部分保存为pro.pdb文件;
  • 使用avogadro打开mol.pdb文件,构建—氢原子—添加氢原子,文件—输出为mol.mol2文件
1
2
3
4
# 进入动力学文件目录
cd dy
gmx pdb2gmx -f pro.pdb -o protein_processed.gro -ignh #回车后按2次1,看到名人名言代表成功。
perl sort_mol2_bonds.pl mol.mol2 mol_fix.mol2
  • 文本编辑器打开mol2文件,把@MOLECULE下的星号替换成正确残基名,为了方便演示,这里我暂定义为resi。
  • 访问CGenFF,需用教育网邮箱注册,将上面fixed的mol2文件上传,转换为str文件下载。
1
2
python cgenff_charmm2gmx_py3_nx2.py resi mol_fix.mol2 mol_fix.str charmm36-jul2022.ff #记得指定残基
gmx editconf -f resi_ini.pdb -o resi.gro
  • 此时已经生成了两个gro文件,新建文本文档,命名为complex.gro,首先将蛋白质的gro文件全部内容复制过去,再将小分子第三行到倒数第二行复制,插入到先前蛋白质的最后一行以前。下面为为示例数据:
1
2
3
4
163ASN C 1691 0.621 -0.740 -0.126
163ASN O1 1692 0.624 -0.616 -0.140
163ASN O2 1693 0.683 -0.703 -0.011
5.99500 5.19182 9.66100 0.00000 0.00000 -2.99750 0.00000 0.00000 0.00000
  • 复制后为:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
163ASN C 1691 0.621 -0.740 -0.126
163ASN O1 1692 0.624 -0.616 -0.140
163ASN O2 1693 0.683 -0.703 -0.011

1JZ4 C4 1 2.429 -2.412 -0.007
1JZ4C7 2 2.155 -2.721 -0.411
1JZ4C8 3 2.207 -2.675 -0.533
1JZ4 C9 4 2.267 -2.551 -0.545
1JZ4 C10 5 2.277 -2.473 -0.430
1JZ4 C11 6 2.169 -2.646 -0.295
1JZ4 C12 7 2.229 -2.519 -0.308
1JZ4 C13 8 2.246 -2.441 -0.181
1JZ4 C14 9 2.392 -2.470 -0.139
1JZ4 OAB 10 2.341 -2.354 -0.434
1JZ4 H1 11 2.531 -2.436 0.015
1JZ4 H2 12 2.366 -2.453 0.069
1JZ4 H3 13 2.417 -2.306 -0.010
1JZ4 H4 14 2.107 -2.812 -0.407
1JZ4 H5 15 2.199 -2.735 -0.617
1JZ4H6 16 2.304 -2.518 -0.635
1JZ4H7 17 2.137 -2.681 -0.204
1JZ4 H8 18 2.178 -2.476 -0.106
1JZ4 H9 19 2.227 -2.337 -0.193
1JZ4 H10 20 2.458 -2.429 -0.214
1JZ4 H11 21 2.402 -2.577 -0.131
1JZ4 H12 22 2.374 -2.321 -0.516

5.99500 5.19182 9.66100 0.00000 0.00000 -2.99750 0.00000 0.00000 0.00000
  • 此时复合物文件的原子数为2个文件之和,因此需要在第2行把2个文件原子数相加并保存。
  • 再打开topol.top文件,在[ moleculetype ]以上添加如下信息:
1
2
; Include ligand parameters
#include "resi.prm"
  • 拉到最下面,在#endif后面添加:
1
2
; Include ligand topology
#include "resi.itp"
  • 再拉到最后面,[ molecules ]项,在Protein_chain_A 下添加:
1
resi                 1

定义盒子

  • 这步主要是定义盒子并添加溶剂。
1
2
gmx editconf -f complex.gro -o newbox.gro -bt dodecahedron -d 1.0
gmx solvate -cp newbox.gro -cs spc216.gro -p topol.top -o solv.gro

添加离子

  • 构建完盒子后,现在得到了一个带电蛋白质的溶剂化系统(如果打开topol.top,看到[ atoms ]项目中会存在类似于qtot 6字段),因此需要在系统中添加离子。
  • 新建ions.mdp文件,将下列代码粘贴进去并保存:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
; LINES STARTING WITH ';' ARE COMMENTS
title = Minimization ; Title of run

; Parameters describing what to do, when to stop and what to save
integrator = steep ; Algorithm (steep = steepest descent minimization)
emtol = 1000.0 ; Stop minimization when the maximum force < 10.0 kJ/mol
emstep = 0.01 ; Energy step size
nsteps = 50000 ; Maximum number of (minimization) steps to perform

; Parameters describing how to find the neighbors of each atom and how to calculate the interactions
nstlist = 1 ; Frequency to update the neighbor list and long range forces
cutoff-scheme = Verlet
ns_type = grid ; Method to determine neighbor list (simple, grid)
rlist = 1.0 ; Cut-off for making neighbor list (short range forces)
coulombtype = cutoff ; Treatment of long range electrostatic interactions
rcoulomb = 1.0 ; long range electrostatic cut-off
rvdw = 1.0 ; long range Van der Waals cut-off
pbc = xyz ; Periodic Boundary Conditions
  • 然后继续执行以下命令:
1
2
3
# 倘若报错检查topol.top最后一行SOL位置是否有误,确保独立一行!
gmx grompp -f ions.mdp -c solv.gro -p topol.top -o ions.tpr
gmx genion -s ions.tpr -o solv_ions.gro -p topol.top -pname NA -nname CL -neutral #选择15,SOL
  • 此时如果访问topol.top拖到最下面应该可以看到添加了离子。

能量最小化

  • 动力学模拟需要把让系统处于能量最小值,先新建em.mdp文件,粘贴以下内容并保存:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
; LINES STARTING WITH ';' ARE COMMENTS
title = Minimization ; Title of run

; Parameters describing what to do, when to stop and what to save
integrator = steep ; Algorithm (steep = steepest descent minimization)
emtol = 1000.0 ; Stop minimization when the maximum force < 10.0 kJ/mol
emstep = 0.01 ; Energy step size
nsteps = 50000 ; Maximum number of (minimization) steps to perform

; Parameters describing how to find the neighbors of each atom and how to calculate the interactions
nstlist = 1 ; Frequency to update the neighbor list and long range forces
cutoff-scheme = Verlet
ns_type = grid ; Method to determine neighbor list (simple, grid)
rlist = 1.2 ; Cut-off for making neighbor list (short range forces)
coulombtype = PME ; Treatment of long range electrostatic interactions
rcoulomb = 1.2 ; long range electrostatic cut-off
vdwtype = cutoff
vdw-modifier = force-switch
rvdw-switch = 1.0
rvdw = 1.2 ; long range Van der Waals cut-off
pbc = xyz ; Periodic Boundary Conditions
DispCorr = no
  • 如果后续报错,可以换成这个em.mdp,原理可能是steep算法问题,替换掉不会过于激进,也有可能是define = -DFLEXIBLE这段改变了什么条件,且不去深究了。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
; VARIOUS PREPROCESSING OPTIONS = 
title =
include =
define = -DFLEXIBLE

; RUN CONTROL PARAMETERS =
integrator = cg
; start time and timestep in ps =
tinit = 0
dt = 0.001
nsteps = 100

; ENERGY MINIMIZATION OPTIONS =
emtol = 0.00001
emstep = 0.001
nstcgsteep = 1000

; OUTPUT CONTROL OPTIONS
; Output frequency for coords (x), velocities (v) and forces (f)
nstxout = 0
nstvout = 0
nstfout = 0
; Output frequency for energies to log file and energy file
nstlog = 0
nstcalcenergy = -1
nstenergy = 0
; Output frequency and precision for .xtc file
nstxtcout = 0

lincs_order = 8

rcoulomb = 0.9
rvdw = 0.9
rlist = 0.9
  • 命令行执行下面内容:
1
2
gmx grompp -f em.mdp -c solv_ions.gro -p topol.top -o em.tpr
gmx mdrun -v -deffnm em

平衡

约束配体

  • 先约束配体:
1
2
3
4
gmx make_ndx -f resi.gro -o index_resi.ndx
...
> 0 & ! a H*
> q
  • 再建立索引组:
1
2
# 后续选第3组
gmx genrestr -f resi.gro -n index_resi.ndx -o posre_resi.itp -fc 1000 1000 1000
  • 然后需要处理topol.top文件,打开拉到底部区域,定位到; Include water topology处,在前面插入并保存:
1
2
3
4
; Ligand position restraints
#ifdef POSRES
#include "posre_resi.itp"
#endif

恒温器

  • 然后执行:
1
2
3
4
5
gmx make_ndx -f em.gro -o index.ndx
...
# 合并蛋白质和残基
> 1 | 13
> q
  • 再做NVT平衡,新建nvt.mdp,粘贴以下内容并保存,但是注意里面有个字段要修改!找到tc-grps,把后面的Protein_JZ4改成上一部合并的蛋白质残基索引!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
title                   = Protein-ligand complex NVT equilibration 
define = -DPOSRES ; position restrain the protein and ligand
; Run parameters
integrator = md ; leap-frog integrator
nsteps = 50000 ; 2 * 50000 = 100 ps
dt = 0.002 ; 2 fs
; Output control
nstenergy = 500 ; save energies every 1.0 ps
nstlog = 500 ; update log file every 1.0 ps
nstxout-compressed = 500 ; save coordinates every 1.0 ps
; Bond parameters
continuation = no ; first dynamics run
constraint_algorithm = lincs ; holonomic constraints
constraints = h-bonds ; bonds to H are constrained
lincs_iter = 1 ; accuracy of LINCS
lincs_order = 4 ; also related to accuracy
; Neighbor searching and vdW
cutoff-scheme = Verlet
ns_type = grid ; search neighboring grid cells
nstlist = 20 ; largely irrelevant with Verlet
rlist = 1.2
vdwtype = cutoff
vdw-modifier = force-switch
rvdw-switch = 1.0
rvdw = 1.2 ; short-range van der Waals cutoff (in nm)
; Electrostatics
coulombtype = PME ; Particle Mesh Ewald for long-range electrostatics
rcoulomb = 1.2 ; short-range electrostatic cutoff (in nm)
pme_order = 4 ; cubic interpolation
fourierspacing = 0.16 ; grid spacing for FFT
; Temperature coupling
tcoupl = V-rescale ; modified Berendsen thermostat
tc-grps = Protein_JZ4 Water_and_ions ; two coupling groups - more accurate
tau_t = 0.1 0.1 ; time constant, in ps
ref_t = 300 300 ; reference temperature, one for each group, in K
; Pressure coupling
pcoupl = no ; no pressure coupling in NVT
; Periodic boundary conditions
pbc = xyz ; 3-D PBC
; Dispersion correction is not used for proteins with the C36 additive FF
DispCorr = no
; Velocity generation
gen_vel = yes ; assign velocities from Maxwell distribution
gen_temp = 300 ; temperature for Maxwell distribution
gen_seed = -1 ; generate a random seed
  • 执行下列代码:
1
2
3
gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -n index.ndx -o nvt.tpr

gmx mdrun -v -deffnm nvt
  • 然后做再做NPT平衡,新建npt.mdp,粘贴以下内容并保存,一样要改tc-grps
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
title                   = Protein-ligand complex NPT equilibration 
define = -DPOSRES ; position restrain the protein and ligand
; Run parameters
integrator = md ; leap-frog integrator
nsteps = 50000 ; 2 * 50000 = 100 ps
dt = 0.002 ; 2 fs
; Output control
nstenergy = 500 ; save energies every 1.0 ps
nstlog = 500 ; update log file every 1.0 ps
nstxout-compressed = 500 ; save coordinates every 1.0 ps
; Bond parameters
continuation = yes ; continuing from NVT
constraint_algorithm = lincs ; holonomic constraints
constraints = h-bonds ; bonds to H are constrained
lincs_iter = 1 ; accuracy of LINCS
lincs_order = 4 ; also related to accuracy
; Neighbor searching and vdW
cutoff-scheme = Verlet
ns_type = grid ; search neighboring grid cells
nstlist = 20 ; largely irrelevant with Verlet
rlist = 1.2
vdwtype = cutoff
vdw-modifier = force-switch
rvdw-switch = 1.0
rvdw = 1.2 ; short-range van der Waals cutoff (in nm)
; Electrostatics
coulombtype = PME ; Particle Mesh Ewald for long-range electrostatics
rcoulomb = 1.2
pme_order = 4 ; cubic interpolation
fourierspacing = 0.16 ; grid spacing for FFT
; Temperature coupling
tcoupl = V-rescale ; modified Berendsen thermostat
tc-grps = Protein_JZ4 Water_and_ions ; two coupling groups - more accurate
tau_t = 0.1 0.1 ; time constant, in ps
ref_t = 300 300 ; reference temperature, one for each group, in K
; Pressure coupling
pcoupl = Berendsen ; pressure coupling is on for NPT
pcoupltype = isotropic ; uniform scaling of box vectors
tau_p = 2.0 ; time constant, in ps
ref_p = 1.0 ; reference pressure, in bar
compressibility = 4.5e-5 ; isothermal compressibility of water, bar^-1
refcoord_scaling = com
; Periodic boundary conditions
pbc = xyz ; 3-D PBC
; Dispersion correction is not used for proteins with the C36 additive FF
DispCorr = no
; Velocity generation
gen_vel = no ; velocity generation off after NVT
  • 再执行:
1
2
3
gmx grompp -f npt.mdp -c nvt.gro -t nvt.cpt -r nvt.gro -p topol.top -n index.ndx -o npt.tpr

gmx mdrun -v -deffnm npt

模拟

  • 新建md.mdp文件,粘贴以下内容并保存,同样记得修改!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
title                   = Protein-ligand complex MD simulation 
; Run parameters
integrator = md ; leap-frog integrator
nsteps = 5000000 ; 2 * 5000000 = 10000 ps (10 ns)
dt = 0.002 ; 2 fs
; Output control
nstenergy = 5000 ; save energies every 10.0 ps
nstlog = 5000 ; update log file every 10.0 ps
nstxout-compressed = 5000 ; save coordinates every 10.0 ps
; Bond parameters
continuation = yes ; continuing from NPT
constraint_algorithm = lincs ; holonomic constraints
constraints = h-bonds ; bonds to H are constrained
lincs_iter = 1 ; accuracy of LINCS
lincs_order = 4 ; also related to accuracy
; Neighbor searching and vdW
cutoff-scheme = Verlet
ns_type = grid ; search neighboring grid cells
nstlist = 20 ; largely irrelevant with Verlet
rlist = 1.2
vdwtype = cutoff
vdw-modifier = force-switch
rvdw-switch = 1.0
rvdw = 1.2 ; short-range van der Waals cutoff (in nm)
; Electrostatics
coulombtype = PME ; Particle Mesh Ewald for long-range electrostatics
rcoulomb = 1.2
pme_order = 4 ; cubic interpolation
fourierspacing = 0.16 ; grid spacing for FFT
; Temperature coupling
tcoupl = V-rescale ; modified Berendsen thermostat
tc-grps = Protein_resi Water_and_ions ; two coupling groups - more accurate
tau_t = 0.1 0.1 ; time constant, in ps
ref_t = 300 300 ; reference temperature, one for each group, in K
; Pressure coupling
pcoupl = Parrinello-Rahman ; pressure coupling is on for NPT
pcoupltype = isotropic ; uniform scaling of box vectors
tau_p = 2.0 ; time constant, in ps
ref_p = 1.0 ; reference pressure, in bar
compressibility = 4.5e-5 ; isothermal compressibility of water, bar^-1
; Periodic boundary conditions
pbc = xyz ; 3-D PBC
; Dispersion correction is not used for proteins with the C36 additive FF
DispCorr = no
; Velocity generation
gen_vel = no ; continuing from NPT equilibration
  • 以上步骤完成后,运行10 ns MD:
1
2
3
gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -n index.ndx -o md_0_10.tpr

gmx mdrun -deffnm md_0_10

分析

  直接运行代码吧:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
work_path=$1
mol_name=$2

mol_root="$work_path/****/$mol_name" #路径地址,自行替换星号

md_trr="$mol_root/md.trr"
md_xtc="$mol_root/md.xtc"
md_edr="$mol_root/md.edr"
md_tpr="$mol_root/md.tpr"

# 提取xtc轨迹(xtc精度稍低,缺少每个原子的速度和受力信息)
gmx trjconv -f $md_trr -o $md_xtc && \
# 提取体系total能量
printf "15\n" | gmx energy -f $md_edr -o "$mol_root/${mol_name}_energy.xvg" && \

# 计算Protein rmsd,选两次protein
printf "1\n1\n" | gmx rms -f $md_xtc -s $md_tpr -o "$mol_root/${mol_name}_rmsd_protein.xvg" && \
# 计算骨架 rmsd,选两次backbone
printf "4\n4\n" | gmx rms -f $md_xtc -s $md_tpr -o "$mol_root/${mol_name}_rmsd_backbone.xvg" && \
# 计算Mol-pro rmsd,第一次protein,第二次mol,代表结构对蛋白做叠合,但只计算mol的rmsd
printf "1\n13\n" | gmx rms -f $md_xtc -s $md_tpr -o "$mol_root/${mol_name}_rmsd_lig.xvg" && \
# 计算Mol rmsd,第一次mol,第二次mol
printf "13\n13\n" | gmx rms -f $md_xtc -s $md_tpr -o "$mol_root/${mol_name}_rmsd_lig_lig.xvg" && \
# 氢键数目,第一次pro,第二次mol
printf "1\n13\n" | gmx hbond -f $md_xtc -s $md_tpr -num "$mol_root/${mol_name}_hbnum.xvg"

  xvg可以直接用Qtgrace可视化,也可以自己用matplotlib绘图。

一键式脚本

  这里有@kotori-y编写的一键MD脚本。

参考链接

Gromacs Tutorials:官方教程,非常细致,现存所有所有教程都是对官方教程的汉化。

速通版本-gromacs分子动力学模拟教程:相当于上个教程视频化。

详细版本-用conda安装gromacs

中医药方向怎么发SCI?分子对接OUT了,快来学分子动力学模拟!:其中有段写作可参考的话术。

MDAnalysis

……

评论

3D cell culture 3D cell culturing 3D cell microarrays 3D culture 3D culture model 3D printing 3D spheroid 3D tumor culture 3D tumors 3D vascular mapping ACT ADV AUTODESK Abdominal wall defects Acoustofluidics Adipocyte Adipogenesis Adoptive cell therapy AirPods Alginate Anticancer Anticancer agents Anticancer drugs Apple Apriori Association Analysis August AutoCAD Autodock Vina Bio-inspired systems Biochannels Bioengineering Bioinspired Biological physics Biomarkers Biomaterial Biomaterials Biomimetic materials Biomimetics Bioprinting Blood purification Blood-brain barrier Bone regeneration Breast cancer Breast cancer cells Breast neoplasms CM1860 CRISPR/Cas9 system CSS CTC isolation CTCs Cancer Cancer angiogenesis Cancer cell invasion Cancer immunity Cancer immunotherapy Cancer metabolism Cancer metastasis Cancer models Cancer screening Cancer stem cells Cell adhesion Cell arrays Cell assembly Cell clusters Cell culture Cell culture techniques Cell mechanical stimulation Cell morphology Cell trapping Cell-bead pairing Cell-cell interaction Cell-laden gelatin methacrylate Cellular uptake Cell−cell interaction Cervical cancer Cheminformatics Chemotherapy Chimeric antigen receptor-T cells Chip interface Circulating tumor cells Clinical diagnostics Cmder Co-culture Coculture Colon Colorectal cancer Combinatorial drug screening Combinatorial drug testing Compartmentalized devices Confined migration Continuous flow Convolutional neural network Cooking Crawler Cryostat Curved geometry Cytokine detection Cytometry Cytotoxicity Cytotoxicity assay DESeq DNA tensioners Data Mining Deep learning Deformability Delaunay triangulation Detective story Diabetic wound healing Diagnostics Dielectrophoresis Differentiation Digital microfluidics Direct reprogramming Discrimination of heterogenic CTCs Django Double emulsion microfluidics Droplet Droplet microfluidics Droplets generation Droplet‐based microfluidics Drug combination Drug efficacy evaluation Drug evaluation Drug metabolism Drug resistance Drug resistance screening Drug screening Drug testing Dual isolation and profiling Dynamic culture Earphone Efficiency Efficiency of encapsulation Elastomers Embedded 3D bioprinting Encapsulation Endothelial cell Endothelial cells English Environmental hazard assessment Epithelial–mesenchymal transition Euclidean distance Exosome biogenesis Exosomes Experiment Extracellular vesicles FC40 FP-growth Fabrication Fast prototyping Fibroblasts Fibrous strands Fiddler Flask Flow rates Fluorescence‐activated cell sorting Functional drug testing GEO Galgame Game Gene Expression Profiling Gene delivery Gene expression profiling Gene targetic Genetic association Gene‐editing Gigabyte Glypican-1 GoldenDict Google Translate Gradient generator Gromacs Growth factor G‐CSF HBEXO-Chip HTML Hanging drop Head and neck cancer Hectorite nanoclay Hepatic models Hepatocytes Heterotypic tumor HiPSCs High throughput analyses High-throughput High-throughput drug screening High-throughput screening assays High‐throughput methods Histopathology Human neural stem cells Human skin equivalent Hydrogel Hydrogel hypoxia Hydrogels ImageJ Immune checkpoint blockade Immune-cell infiltration Immunoassay Immunological surveillance Immunotherapy In vitro tests In vivo mimicking Induced hepatocytes Innervation Insulin resistance Insulin signaling Interferon‐gamma Intestinal stem cells Intracellular delivery Intratumoral heterogeneity JRPG Jaccard coefficient JavaScript July June KNN Kidney-on-a-chip Lab-on-a-chip Laptop Large scale Lattice resoning Leica Leukapheresis Link Lipid metabolism Liquid biopsy Literature Liver Liver microenvironment Liver spheroid Luminal mechanics Lung cells MOE Machine Learning Machine learning Macro Macromolecule delivery Macroporous microgel scaffolds Magnetic field Magnetic sorting Malignant potential Mammary tumor organoids Manhattan distance Manual Materials science May Mechanical forces Melanoma Mesenchymal stem cells Mesoporous silica particles (MSNs) Metastasis Microassembly Microcapsule Microcontact printing Microdroplets Microenvironment Microfluidic array Microfluidic chips Microfluidic device Microfluidic droplet Microfluidic organ-on-a chip Microfluidic organ-on-a-chip Microfluidic patterning Microfluidic screening Microfluidic tumor models Microfluidic-blow-spinning Microfluidics Microneedles Micropatterning Microtexture Microvascular Microvascular networks Microvasculatures Microwells Mini-guts Mirco-droplets Molecular docking Molecular dynamics Molecular imprinting Monolith Monthly Multi-Size 3D tumors Multi-organoid-on-chip Multicellular spheroids Multicellular systems Multicellular tumor aggregates Multi‐step cascade reactions Myeloid-derived suppressor cells NK cell NanoZoomer Nanomaterials Nanoparticle delivery Nanoparticle drug delivery Nanoparticles Nanowell Natural killer cells Neural progenitor cell Neuroblastoma Neuronal cell Neurons Nintendo Nissl body Node.js On-Chip orthogonal Analysis OpenBabel Organ-on-a-chip Organ-on-a-chip devices Organically modified ceramics Organoids Organ‐on‐a‐chip Osteochondral interface Oxygen control Oxygen gradients Oxygen microenvironments PDA-modified lung scaffolds PDMS PTX‐loaded liposomes Pain relief Pancreatic cancer Pancreatic ductal adenocarcinoma Pancreatic islet Pathology Patient-derived organoid Patient-derived tumor model Patterning Pearl powder Pearson coefficient Penetralium Perfusable Personalized medicine Photocytotoxicity Photodynamic therapy (PDT) Physiological geometry Pluronic F127 Pneumatic valve Poetry Polymer giant unilamellar vesicles Polystyrene PowerShell Precision medicine Preclinical models Premetastatic niche Primary cell transfection Printing Protein patterning Protein secretion Pubmed PyMOL Pybel Pytesseract Python Quasi-static hydrodynamic capture R RDKit RNAi nanomedicine RPG Reactive oxygen species Reagents preparation Resistance Review Rod-shaped microgels STRING Selective isolation Self-assembly Self-healing hydrogel September Signal transduction Silk-collagen biomaterial composite Similarity Single cell Single cells Single molecule Single-cell Single-cell RNA sequencing Single‐cell analysis Single‐cell printing Size exclusion Skin regeneration Soft lithography Softstar Spheroids Spheroids-on-chips Staining StarBase Stem cells Sub-Poisson distribution Supramolecular chemistry Surface chemistry Surface modification Switch T cell function TCGA Tanimoto coefficient The Millennium Destiny The Wind Road Thin gel Tissue engineering Transcriptome Transfection Transient receptor potential channel modulators Tropism Tubulogenesis Tumor environmental Tumor exosomes Tumor growth and invasion Tumor immunotherapy Tumor metastasis Tumor microenvironment Tumor response Tumor sizes Tumor spheroid Tumor-on-a-chip Tumorsphere Tumors‐on‐a‐chip Type 2 diabetes mellitus Ultrasensitive detection Unboxing Underlying mechanism Vascularization Vascularized model Vasculature Visual novel Wettability Windows Terminal Word Writing Wuxia Xenoblade Chronicles Xin dynasty XuanYuan Sword Youdao cnpm fsevents miR-125b-5p miR-214-3p miRNA signature miRanda npm
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×